
تعداد نشریات | 43 |
تعداد شمارهها | 1,714 |
تعداد مقالات | 14,051 |
تعداد مشاهده مقاله | 33,996,539 |
تعداد دریافت فایل اصل مقاله | 13,614,576 |
Extremal tetracyclic graphs with respect to the first and second Zagreb indices | ||
Transactions on Combinatorics | ||
مقاله 4، دوره 5، شماره 4، اسفند 2016، صفحه 35-55 اصل مقاله (310.45 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2016.12878 | ||
نویسندگان | ||
Nader Habibi* 1؛ Tayebeh Dehghan Zadeh2؛ Ali Reza Ashrafi2 | ||
1university of Ayatollah Al-ozma | ||
2University of Kashan | ||
چکیده | ||
The first Zagreb index, $M_1(G)$, and second Zagreb index, $M_2(G)$, of the graph $G$ is defined as $M_{1}(G)=\sum_{v\in V(G)}d^{2}(v)$ and $M_{2}(G)=\sum_{e=uv\in E(G)}d(u)d(v),$ where $d(u)$ denotes the degree of vertex $u$. In this paper, the first and second maximum values of the first and second Zagreb indices in the class of all $n-$vertex tetracyclic graphs are presented. | ||
کلیدواژهها | ||
First Zagreb index؛ second Zagreb index؛ tetracyclic graph | ||
مراجع | ||
[1] V. Andova and M. Petrusevski, Variable Zagreb indices and Karamata's inequality, MATCH Commun. Math. Comput. Chem., 65 no. 3 (2011) 685{690. [2] V. Andova, N. Cohen and R. Skrekovski, Graph classes (dis)satisfying the Zagreb indices inequality, MATCH Commun. Math. Comput. Chem., 65 no. 3 (2011) 647{658. [3] A. R. Ashra, T. Doslic and A. Hamzeh, The Zagreb coindices of graph operations, Discrete Appl. Math., 158 no. 15 (2010) 1571{1578. [4] A. R. Ashra, T. Dehghan-Zadeh, N. Habibi and P. E. John, Maximum values of atombond connectivity index in the class of tricyclic graphs, J. Appl. Math. Comput., 50 no. 1-2 (2016) 511{527. [5] K. Ch. Das and I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem., 52 (2004) 103{112. [6] K. Ch. Das, I. Gutman and B. Zhou, New upper bounds on Zagreb indices, J. Math. Chem., 46 no. 2 (2009) 514{521. [7] T. Dehghan-Zadeh, H. Hua, A. R. Ashra and N. Habibi, Extremal tri-cyclic graphs with respect to the rst and second Zagreb indices, Note Mat., 33 no. 2 (2013) 107{121. [8] T. Dehghan-Zadeh, A. R. Ashra and N. Habibi, Maximum values of atombond connectivity index in the class of tetracyclic graphs, J. Appl. Math. Comput., 46 no. 1-2 (2014) 285{303. [9] T. Dehghan-Zadeh, A. R. Ashra and N. Habibi, Tetracyclic graphs with extremal values of Randic index, Boll. Unione Mat. Ital., 8 no. 1 (2015) 9{16. [10] I. Gutman and K. Ch. Das, The rst Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem., 50 (2004) 83{92. [11] I. Gutman and N. Trinajstic, Graph theory and molecular orbitals, Total electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972) 535{538. [12] A. Ilic, M. Ilic and B. Liu, On the upper bounds for the rst Zagreb index, Kragujevac J. Math., 35 no. 1 (2011) 173{182. [13] M. H. Khalifeh, H. Youse-Azari and A. R. Ashra, The rst and second Zagreb indices of some graph operations, Discrete Appl. Math, 157 no. 4 (2009) 804{811. [14] S. Li and H. Zhou, On the maximum and minimum Zagreb indices of graphs with connectivity at most k, Appl. Math. Lett., 23 no. 2 (2010) 128{132. [15] S. Li and M. Zhang, Sharp upper bounds for Zagreb indices of bipartite graphs with a given diameter, Appl. Math. Lett., 24 no. 2 (2011) 131{137. [16] S. Li and Q. Zhao, Sharp upper bounds on Zagreb indices of bicyclic graphs with a given matching number, Math. Comput. Modelling, 54 no. 11-12 (2011) 2869{2879. [17] S. Li, H. Yang and Q. Zhao, Sharp bound on Zagreb indices of cacti with k pendant vertices, Filomat, 26 no. 6 (2012) 1189{1200. [18] S. N. Qiao, On The Zagreb index of quasi-tree graphs, Appl. Math. E-Notes, 10 (2010) 147{150. [19] P. S. Ranjini, V. Lokesha and I. N. Cangul, On the Zagreb indices of the line graphs of the subdivision graphs, Appl. Math. Comput., 218 no. 3 (2011) 699{702. [20] D. Stevanovic, Comparing the Zagreb indices of the NEPS of graphs, Appl. Math. Comput., 219 no. 3 (2012) 1082{1086. [21] K. Xu, The Zagreb indices of graphs with a given clique number, Appl. Math. Lett., 24 no. 6 (2011) 1026{1030. [22] Z. Yarahmadi, A. R. Ashra and S. Moradi, Extremal polyomino chains with respect to Zagreb indices, Appl. Math. Lett., 25 no. 2 (2012) 166{171. [23] Q. Zhao and S. Li, Sharp bounds for the Zagreb indices of bicyclic graphs with k-pendant vertices, Discrete Appl. Math., 158 no. 17 (2010) 1953{1962. | ||
آمار تعداد مشاهده مقاله: 2,796 تعداد دریافت فایل اصل مقاله: 2,053 |